Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jennifer S. Macalindong, Frank R. Fronczek, Judith A. Schuerman,‡ Joel Selbin§ and Steven F. Watkins*

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Current address: Louisiana Department of
Environmental Quality, PO Box 4302, Baton
Rouge, LA 70821, USA
Current address: 3345 16th Street, Boulder,
CO 80304, USA

Correspondence e-mail: swatkins@lsu.edu

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.004 Å R factor = 0.029 wR factor = 0.063 Data-to-parameter ratio = 34.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(2-Methyldithiobenzoato-κS)(triphenylphosphine-κO)gold(I)

The asymmetric unit of the title compound, o-CH₃(C₆H₄)-C(S)S-Au-P(C₆H₅)₃ or [Au(C₈H₇S₂)(C₁₈H₁₅P)], consists of two quasi-linear gold complexes. The S-Au-P bond angles [173.83 (2), 175.03 (2)°], S-Au bond lengths [2.3240 (6), 2.3329 (6) Å] and Au-P bond lengths [2.2568 (6), 2.2632 (6) Å] are consistent with previously reported values. The major difference in the two molecules is that the *o*-methylphenyl rings are twisted with respect to the dithiocarboxyl planes by 73.0 (3)° and 46.6 (3)°, as measured by S-C-C-C torsion angles.

Comment

The o-methyldithiobenzoate anion most often coordinates as a bidentate ligand (Biagini-Cingi et al., 1997; Kato et al., 2000), and has been shown to act as a bridging ligand in an Au(I) hexamer (Schuerman et al., 1986). This is the first reported instance of its monodentate coordination to a coinage metal. The dithiobenzoate ligand coordinates in monodentate fashion in the analogous compound lacking the methyl group, (C₆H₅CS₂)AuP(C₆H₅)₃ (Manotti-Lanfredi et al., 1992). In that structure, which also has two independent molecules, the Au-S distances are 2.301 (4) and 2.338 (3) Å, the Au–P distances are 2.269 (6) and 2.263 (4) Å, and the S-Au-P angles are slightly closer to linearity than in the title complex, 177.2 (3) and 179.0 (2) $^{\circ}$. The major difference in the two molecules of the asymmetric unit is that the o-methylphenyl rings are twisted with respect to the dithiocarboxyl planes by $73.0 (3)^{\circ}$ and 46.6 (3)°, as measured by S-C-C-C torsion angles.

Cell dimensions of the title compound at 291 K, measured on an Enraf–Nonius CAD4 diffractometer with Mo $K\alpha$ radiation, are a = 19.7028 (10), b = 12.5068 (14), c =18.784 (2) Å, $\beta = 93.314 (8)^{\circ}$, V = 4621.0 (14) Å².

Experimental

A solution of 0.0105 g PPh₃ in 4 ml of CS₂ was added to 0.0050 g [Au₆(CH₃C₆H₄CS₂)₆] (Schuerman *et al.*, 1986) dissolved in 4 ml CS₂. The pinkish–purple precipitate was filtered, air-dried, and recrystallized from diethyl ether (Schuerman, 1988).

Received 23 March 2006 Accepted 24 March 2006.

All rights reserved

© 2006 International Union of Crystallography

Figure 1

Molecule 1 of the asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% level. H atoms are omitted.

Figure 2

Molecule 2 of the asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% level. H atoms are omitted.

Crystal data

$[Au(C_8H_7S_2)(C_{18}H_{15}P)]$	$D_x = 1.86$
$M_r = 626.49$	Mo Kα ra
Monoclinic, $P2_1/c$	Cell parar
a = 19.525 (2) Å	reflectio
b = 12.3297 (10) Å	$\theta = 2.5 - 35$
c = 18.6250 (10) Å	$\mu = 6.84 \text{ r}$
$\beta = 93.486 \ (3)^{\circ}$	T = 100 K
V = 4475.4 (6) Å ³	Fragment,
Z = 8	0.28×0.2

Data collection

Nonius KappaCCD diffractometer	18
with Oxford Cryostream	15
ω scans with κ offsets	R
Absorption correction: multi-scan	$\theta_{\rm r}$
HKL SCALEPACK	h
(Otwinowski & Minor 1997)	k
$T_{\min} = 0.198, T_{\max} = 0.256$	1 :
83707 measured reflections	

 $Mg m^{-3}$ diation meters from 17051 ons mm^{-1} purple $24 \times 0.20 \text{ mm}$

8706 independent reflections 5875 reflections with $I > 2\sigma(I)$ $t_{int} = 0.024$ $max = 35.0^{\circ}$ $= -30 \rightarrow 31$ $= -18 \rightarrow 19$ $= -30 \rightarrow 30$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0199P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.029$	+ 8.6263 <i>P</i>]
$wR(F^2) = 0.063$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.006$
18706 reflections	$\Delta \rho_{\rm max} = 3.06 \text{ e } \text{\AA}^{-3}$
543 parameters	$\Delta \rho_{\rm min} = -1.63 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Select	ed g	geometric	parameters	(A	٩,	0))
--------	------	-----------	------------	----	----	----	---

Au1-P1	2.2568 (6)	Au2-P2	2.2632 (6)
Au1-S2	2.3240 (6)	Au2-S4	2.3329 (6)
S1-C19	1.648 (2)	\$3-C45	1.645 (2)
S2-C19	1.716 (2)	S4-C45	1.734 (2)
C19-C20	1.492 (3)	C45-C46	1.496 (3)
P1-Au1-S2	175.03 (2)	P2-Au2-S4	173.83 (2)
C19-S2-Au1	101.06 (8)	C45-S4-Au2	101.31 (8)
C20-C19-S1	119.84 (17)	C46-C45-S3	121.71 (17)
C20-C19-S2	113.59 (16)	C46-C45-S4	114.35 (16)
S1-C19-S2	126.57 (13)	S3-C45-S4	123.93 (14)
S1-C19-C20-C25	73.0 (3)	S3-C45-C46-C51	46.6 (3)

H atoms were placed in calculated positions, guided by difference maps, with C-H bond distances 0.95–0.98 Å, $U_{iso} = 1.2U_{eq}(C)$ (1.5 for methyl), and thereafter refined as riding. A torsional parameter was refined for each methyl group. The largest residual peak is located 1.04 Å from Au1, and all peaks with density greater than 1 e Å $^{-3}$ are located within 1.11 Å of Au positions. The deepest hole is located 0.56 from atom Au2.

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by Grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

- Biagini-Cingi, M., Manotti-Lanfredi, A. M., Ugozzoli, F., Camus, A. & Marsich, N. (1997). Inorg. Chim. Acta, 262, 69-75.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kato, S., Tani, K., Kitaoka, N., Yamada, K. & Mifune, H. (2000). J. Organomet. Chem. 611, 190-199.
- Manotti-Lanfredi, A. M., Ugozzoli, F., Asaro, F., Pellizer, G., Marsich, N. & Camus, A. (1992). Inorg. Chim. Acta, 192, 271-282.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Schuerman, J. A. (1988). Univ. Microfilms Int., Order No. DA8904565. (1988), 345 pp. From: Diss. Abstr. Int. B 1989, 49, 5300-5301.
- Schuerman, J. A., Fronczek, F. R. & Selbin, J. (1986). J. Am. Chem. Soc. 108, 336-337
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.