Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jennifer S. Macalindong,

Frank R. Fronczek, Judith A. Schuerman, \ddagger Joel Selbin§ and Steven F. Watkins*

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
\# Current address: Louisiana Department of Environmental Quality, PO Box 4302, Baton Rouge, LA 70821, USA
§ Current address: 3345 16th Street, Boulder, CO 80304, USA

Correspondence e-mail: swatkins@lsu.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.029$
$w R$ factor $=0.063$
Data-to-parameter ratio $=34.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(2-Methyldithiobenzoato- κ S)(triphenylphos-phine- κ O)gold(I)

The asymmetric unit of the title compound, o- $\mathrm{CH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ $\mathrm{C}(\mathrm{S}) \mathrm{S}-\mathrm{Au}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ or $\left[\mathrm{Au}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, consists of two quasi-linear gold complexes. The $\mathrm{S}-\mathrm{Au}-\mathrm{P}$ bond angles [173.83 (2), $\left.175.03(2)^{\circ}\right], \mathrm{S}-\mathrm{Au}$ bond lengths [2.3240 (6), 2.3329 (6) A] and $\mathrm{Au}-\mathrm{P}$ bond lengths [2.2568 (6), 2.2632 (6) Å] are consistent with previously reported values. The major difference in the two molecules is that the o methylphenyl rings are twisted with respect to the dithiocarboxyl planes by $73.0(3)^{\circ}$ and $46.6(3)^{\circ}$, as measured by $S-$ $\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles.

Comment

The o-methyldithiobenzoate anion most often coordinates as a bidentate ligand (Biagini-Cingi et al., 1997; Kato et al., 2000), and has been shown to act as a bridging ligand in an $\mathrm{Au}(\mathrm{I})$ hexamer (Schuerman et al., 1986). This is the first reported instance of its monodentate coordination to a coinage metal. The dithiobenzoate ligand coordinates in monodentate fashion in the analogous compound lacking the methyl group, $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CS}_{2}\right) \mathrm{AuP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ (Manotti-Lanfredi et al., 1992). In that structure, which also has two independent molecules, the Au S distances are 2.301 (4) and 2.338 (3) \AA, the $\mathrm{Au}-\mathrm{P}$ distances are 2.269 (6) and 2.263 (4) \AA, and the $S-A u-P$ angles are slightly closer to linearity than in the title complex, 177.2 (3) and $179.0(2)^{\circ}$. The major difference in the two molecules of the asymmetric unit is that the o-methylphenyl rings are twisted with respect to the dithiocarboxyl planes by $73.0(3)^{\circ}$ and $46.6(3)^{\circ}$, as measured by $\mathrm{S}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles.

(I)

Cell dimensions of the title compound at 291 K , measured on an Enraf-Nonius CAD4 diffractometer with Mo $K \alpha$ radiation, are $a=19.7028(10), b=12.5068$ (14), $c=$ 18.784 (2) $\AA, \beta=93.314(8)^{\circ}, V=4621.0(14) \AA^{2}$.

Experimental

A solution of $0.0105 \mathrm{~g} \mathrm{PPh}_{3}$ in 4 ml of CS_{2} was added to 0.0050 g $\left[\mathrm{Au}_{6}\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CS}_{2}\right)_{6}\right]$ (Schuerman et al., 1986) dissolved in 4 ml CS 2. The pinkish-purple precipitate was filtered, air-dried, and recrystallized from diethyl ether (Schuerman, 1988).

Received 23 March 2006 Accepted 24 March 2006.

Figure 1
Molecule 1 of the asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% level. H atoms are omitted.

Figure 2
Molecule 2 of the asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% level. H atoms are omitted.

Crystal data

$\left[\mathrm{Au}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right.$]
$M_{r}=626.49$
Monoclinic, $P 2_{1} / c$
$a=19.525(2) \AA$
$b=12.3297$ (10) \AA
$c=18.6250(10) \AA$
$\beta=93.486$ (3)
$V=4475.4(6) \AA^{3}$
$Z=8$
$D_{x}=1.86 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 17051
reflections
$\theta=2.5-35^{\circ}$
$\mu=6.84 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Fragment, purple
$0.28 \times 0.24 \times 0.20 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer	18706 independent reflections
\quad with Oxford Cryostream	15875 reflections with $I>2 \sigma(I)$
ω scans with κ offsets	$R_{\text {int }}=0.024$
Absorption correction: multi-scan	$\theta_{\max }=35.0^{\circ}$
$H K L S C A L E P A C K$	$h=-30 \rightarrow 31$
(Otwinowski \& Minor 1997)	$k=-18 \rightarrow 19$
$T_{\min }=0.198, T_{\max }=0.256$	$l=-30 \rightarrow 30$

Refinement

Refinement on F^{2}

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0199 P)^{2}\right)
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

Au1-P1	$2.2568(6)$	Au2-P2	$2.2632(6)$
Au1-S2	$2.3240(6)$	Au2-S4	$2.3329(6)$
S1-C19	$1.648(2)$	S3-C45	$1.645(2)$
S2-C19	$1.716(2)$	S4-C45	$1.734(2)$
C19-C20	$1.492(3)$	C45-C46	$1.496(3)$
P1-Au1-S2	$175.03(2)$	P2-Au2-S4	$173.83(2)$
C19-S2-Au1	$101.06(8)$	C45-S4-Au2	$101.31(8)$
C20-C19-S1	$119.84(17)$	C46-C45-S3	$121.71(17)$
C20-C19-S2	$113.59(16)$	C46-C45-S4	$114.35(16)$
S1-C19-S2	$126.57(13)$	S3-C45-S4	$123.93(14)$
S1-C19-C20-C25	$73.0(3)$	S3-C45-C46-C51	$46.6(3)$

H atoms were placed in calculated positions, guided by difference maps, with C-H bond distances $0.95-0.98 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})(1.5$ for methyl), and thereafter refined as riding. A torsional parameter was refined for each methyl group. The largest residual peak is located $1.04 \AA$ from Au1, and all peaks with density greater than $1 \mathrm{e} \AA^{-3}$ are located within $1.11 \AA$ of Au positions. The deepest hole is located 0.56 from atom Au2.

Data collection: COLLECT (Nonius, 2000); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor 1997); data reduction: HKL DENZO (Otwinowski \& Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by Grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

Biagini-Cingi, M., Manotti-Lanfredi, A. M., Ugozzoli, F., Camus, A. \& Marsich, N. (1997). Inorg. Chim. Acta, 262, 69-75.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kato, S., Tani, K., Kitaoka, N., Yamada, K. \& Mifune, H. (2000). J. Organomet. Chem. 611, 190-199.
Manotti-Lanfredi, A. M., Ugozzoli, F., Asaro, F., Pellizer, G., Marsich, N. \& Camus, A. (1992). Inorg. Chim. Acta, 192, 271-282.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Schuerman, J. A. (1988). Univ. Microfilms Int., Order No. DA8904565. (1988), 345 pp. From: Diss. Abstr. Int. B 1989, 49, 5300-5301.
Schuerman, J. A., Fronczek, F. R. \& Selbin, J. (1986). J. Am. Chem. Soc. 108, 336-337.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

